If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x=50
We move all terms to the left:
x^2-14x-(50)=0
a = 1; b = -14; c = -50;
Δ = b2-4ac
Δ = -142-4·1·(-50)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{11}}{2*1}=\frac{14-6\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{11}}{2*1}=\frac{14+6\sqrt{11}}{2} $
| -139=-6+7(4m+1) | | 4/7+x=4/2 | | -7x-6x=-15 | | 3x+27=2x+16 | | | | | | | | a2+3= | | 4(n-4)+14n=2 | | 47+3y+16+2y-15=180 | | x+441 =−243 | | (12x-18)=(8x+42) | | 6•k=96 | | F(x)=3x-23 | | -9(u-3)=-4u+47 | | 5x+1=37+x | | –3z=10+2z | | 15x-6=5x+10 | | -192=-5x-4(x+21) | | 4=2d+–6 | | 5j-3j-j+4j=20 | | 34+2t-17+2t-8=180 | | (x-3)2+15=40 | | 15x-6=5x10 | | (x+5)(x-5)=120 | | 6x/3-7=2x/8 | | 7−3n=n+3 | | 8j+8=8 | | 5/6n+2/3=8/3 | | w-w+w=10 | | -6=2x+3(x+13) | | -36=−36=9a |